

Last Updated: November 22, 2024 1:58 PM © 2024 madbeanpedals

The 2024 version of the **Aquababy** has no circuit changes and some minor layout adjustments. The PCB has been converted from a 2-layer to 4-layer design for low noise operation and the project now offers a PCB mounted pot option.

Overview

The Aquababy is a faithful clone of the Boss® DM-2[™] analog delay. It offers up to 300ms of analog delay in a 1590B enclosure. The Aquababy is designed to utilize different BBD types (MN3205 or MN3005) and clocks depending on availability and price. Minimal modifications are required to set the build up for these different BBDs, and this will be explained in detail later on in this document.

Controls

- MIX: The ratio of delay vs. clean signal.
- **FDBK**: The number of delay repeats. Maximum FDBK setting will induce self-oscillation.
- **DELAY**: Delay time from slap-back to about 300ms.
- BIAS: Used to set the proper bias on the input of the MN3x05 for it to produce clean delay.
- **CANCEL**: Sets the mix of the two delay outputs on the MN3x05.
- **CLOCK**: Sets the correct clock frequency range produced by the MN310x to drive the BBD delay lines in the MN3x05.

Terms of Use: You are free to use purchased Aquababy24 circuit boards for both DIY and small commercial operations. You may not offer Aquababy24 PCBs for resale or as part of a "kit" in a commercial fashion. Peer to peer re-sale is fine, though.

Technical assistance for is available via the madbeanpedals forum. Please go there rather than emailing me for personal assistance. This is because (1) I'm not always available to respond via email in a timely and continuous manner, and (2) posting technical problems and solutions in the forum creates a record from which other members may benefit.

All copyrights and registered trademarks are property of their original owners. Any mention of trademarked or intellectual properties in this documents is purely for comparative purposes.

B.O.M.

Res	sistors	Caps		Dio	Diodes	
R1	1M	C1	47n	D1	1N4001	
R2	10k	C2	1uF	D2	1n914	
R3	470k	C3	6n8	Trans	istors	
R4	10k	C4	100pF	Q1	MPSA18	
R5	10k	C5	100pF	Q2	MPSA18	
R6	47k	C6	6n8	Q3	MPSA18	
R7	47k	C7	1uF	Q4	MPSA18	
R8	47k	C8	10uF	l.	С	
R9	10k	C9	10uF	IC1	4558	
R10	47k	C10	220n	IC2	NE570	
R11	470R	C11	100pF	IC3	MN3005	
R12	100k	C12	10uF	IC4	MN3101	
R13	10k	C13	6n8	Trim	mers	
R14	10k	C14	82n	BIAS	20k	
R15	10k	C15	330pF	CANCEL	10k	
R16	10k	C16	1uF	CLOCK	1M	
R17	10k	C17	1uF	Po	ots	
R18	10k	C18	2n2	DELAY	1MB	
R19	100k	C19	33n	FDBK	50kB	
R20	100k	C20	1n	MIX	50kB	
R21	100k	C21	39n			
R22	10k	C22	330pF			
R23	10k	C23	1uF			
R24	10k	C24	220n			
R25	10k	C25	100pF			
R26	10k	C26	1uF			
R27	10k	C27	1uF			
R28	10k	C28	100n			
R29	47k	C29	1uF			
R30	22k	C30	100pF			
R31	10k	C31	100uF			
R32	10k	C32	100n			
R33	22R	C33	10uF			
R35	*see notes	C34	22uF			
R40	18k					
R41	10k					
R42	22k					

Shopping List

Value	QTY	Туре	Rating
22R	1	Metal / Carbon Film	1/4W
470R	1	Metal / Carbon Film	1/8W
10k	20	Metal / Carbon Film	1/8W
18k	1	Metal / Carbon Film	1/8W
22k	2	Metal / Carbon Film	1/8W
47k	5	Metal / Carbon Film	1/8W
100k	4	Metal / Carbon Film	1/8W
470k	1	Metal / Carbon Film	1/8W
1M	1	Metal / Carbon Film	1/8W
100pF	5	Ceramic / MLCC	25v min
330pF	2	Ceramic / MLCC	25v min
1n	1	Film	25v min
2n2	1	Film	25v min
6n8	3	Film	25v min
33n	1	Film	25v min
39n	1	Film	25v min
47n	1	Film	25v min
82n	1	Film	25v min
100n	2	Film	25v min
220n	2	Film	25v min
1uF	1	Film	25v min
1uF	7	Electrolytic	25v min
10uF	4	Electrolytic	25v min
22uF	1	Electrolytic	25v min
100uF	1	Electrolytic	25v min
1N4001	1		
1n914	1		
MPSA18	4	or, other BJT	
4558	1		
NE570	1		
MN3005	1		
	1		
	I	D 0000 0	
20K	1	Bourns 3362p or 6mm	
10k	1	Bourns 3362p or 6mm	
1M	1	Bourns 3362p or 6mm	
1MB	1	PCB Right Angle	16mm
50kB	2	PCB Right Angle	16mm

Additional Hardware

- (1) 1590B enclosure

- (1) 1350D enclosure
 (2) 1/4" mono jacks
 (1) Slim 2.1mm DC jack
 (1) Standard 3PDT footswitch
 (1) 5mm LED

Build Notes

You can build the Aquababy with the following BBDs: MN3005, MN3205 or v3205. The MN3005 requires an MN3101 clock. The MN3205 and v3205 require either the MN3102 or v3102 clock.

You will need to solder in two jumpers according to which BBD type you use.

Note #1: The v3205 is reported to have a max voltage range of 8v (the MN3205 is usually a little over 9v). If you use the v3205 change R33 from 22R to 1k5 to limit the voltage.

For the Compander (IC2) you can use the NE570, SA571 or v571. They are interchangeable.

Note #2: The FDBK pins go between the socket used for IC2. When populating the pots on the PCB, solder the FDBK pins from the bottom side.

Note #2: R35 is not present in the DM-2. Using a resistor here will raise the output voltage on pins 10&11 for a little more headroom. However, you may need to increase the R20 to offset that increased output. Suggested values for R35 are 18-27k.

Calibration

Make the following adjustments before beginning:

- Mix control at center.
- Delay at full CW.
- FDBK at about 1/3 up.
- BIAS and Cancel trimpots to their center position.
- If you have frequency measurement on your DMM, adjust the Clock trimmer to about 6.5kHz while probing either pin2 or pin4 of IC4. If you don't have this feature set the Clock trim half-way up (note: this is when using a 9v supply).

Audio probe pin3 of IC3 while either strumming the guitar or send some audio through the input of the circuit. Adjust the BIAS trimmer until you get delay passing. The range over which the trimmer will result in delay is usually about 1/4 to 1/6 of its entire rotation. Continue refining the position of BIAS until you get the smallest amount of distortion on the delay signal. Now probe pin4 of IC3 to confirm it is also passing delay. If it does not, make sure that you have clock frequency on both pins 2 and 6.

Now finely adjust the CLOCK trimmer until just before you hear any high pitch whine or aliasing in the audio path. This is the maximum delay setting. The clock frequency should land somewhere between 6 and 7 kHz but in some cases you may be able to go lower (meaning longer delay).

Unless you are using an oscilloscope to calibrate the delay, leave the Cancel trim in the center position.

Circuit Voltages

IC1	4558	IC3	MN3205	Q3	MPSA18
1	4.76	1	0	С	9.48
2	4.75	2	4.42	В	5.67
3	4.75	3	6.05	Е	5.38
4	0	4	6.05	Q4	MPSA18
5	4.75	5	9.46	С	9.48
6	4.75	6	4.42	В	5.41
7	4.74	7	5.07	Е	4.77
8	9.48	8	8.3		
IC2	NE571	IC4	MN3102		
1	1.47	1	3.68		
2	1.84	2	5.18		
3	1.84	3	4.92		
4	0	4	8.3		
5	1.84	5	8.81		
6	1.83	6	4.42		
7	2.97	7	0		
8	1.84	8	4.4		
9	1.84	Q1	MPSA18		
10	3.04	С	9.48		
11	3.04	В	4.38		
12	1.84	Е	3.96		
13	9.48	Q2	MPSA18		
14	1.84	С	9.48	_	
15	1.84	В	2.95		
16	0.98	Е	2.36		

9.5vDC One Spot Current Draw: ~11mA Knobs @ 0

These measurements are for the 3205/3102 combo. If you use the 3005/3101, most voltages will remain the same except:

IC3 pins 1 and 5 will swap values and pin8 will be around 0.6V

Schematic

